Exercise 2

Use residues to evaluate the improper integrals in Exercises 1 through 5.

$$
\begin{gathered}
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}} \\
\text { Ans. } \pi / 4 .
\end{gathered}
$$

Solution

The integrand is an even function of x, so the interval of integration can be extended to $(-\infty, \infty)$ as long as the integral is divided by 2 .

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}=\int_{-\infty}^{\infty} \frac{d x}{2\left(x^{2}+1\right)^{2}}
$$

In order to evaluate the integral, consider the corresponding function in the complex plane,

$$
f(z)=\frac{1}{2\left(z^{2}+1\right)^{2}},
$$

and the contour in Fig. 93. Singularities occur where the denominator is equal to zero.

$$
\begin{gathered}
2\left(z^{2}+1\right)^{2}=0 \\
z^{2}+1=0 \\
z= \pm i
\end{gathered}
$$

The singular point of interest to us is the one that lies within the closed contour, $z=i$.

Figure 1: This is Fig. 93 with the singularity at $z=i$ marked.
According to Cauchy's residue theorem, the integral of $1 /\left[2\left(z^{2}+1\right)^{2}\right]$ around the closed contour is equal to $2 \pi i$ times the sum of the residues at the enclosed singularities.

$$
\oint_{C} \frac{d z}{2\left(z^{2}+1\right)^{2}}=2 \pi i \operatorname{Res}_{z=i} \frac{1}{2\left(z^{2}+1\right)^{2}}
$$

This closed loop integral is the sum of two integrals, one over each arc in the loop.

$$
\int_{L} \frac{d z}{2\left(z^{2}+1\right)^{2}}+\int_{C_{R}} \frac{d z}{2\left(z^{2}+1\right)^{2}}=2 \pi i \operatorname{Res}_{z=i} \frac{1}{2\left(z^{2}+1\right)^{2}}
$$

The parameterizations for the arcs are as follows.

$$
\begin{array}{rll}
L: & z=r, & r=-R \quad \rightarrow \quad r=R \\
C_{R}: & z=R e^{i \theta}, & \theta=0 \quad \rightarrow \quad \theta=\pi
\end{array}
$$

As a result,

$$
\int_{-R}^{R} \frac{d r}{2\left(r^{2}+1\right)^{2}}+\int_{C_{R}} \frac{d z}{2\left(z^{2}+1\right)^{2}}=2 \pi i \operatorname{Res}_{z=i} \frac{1}{2\left(z^{2}+1\right)^{2}} .
$$

Take the limit now as $R \rightarrow \infty$. The integral over C_{R} consequently tends to zero. Proof for this statement will be given at the end.

$$
\int_{-\infty}^{\infty} \frac{d r}{2\left(r^{2}+1\right)^{2}}=2 \pi i \operatorname{Res}_{z=i} \frac{1}{2\left(z^{2}+1\right)^{2}}
$$

The denominator can be written as $2\left(z^{2}+1\right)^{2}=2(z+i)^{2}(z-i)^{2}$. From this we see that the multiplicity of the $z-i$ factor is 2 . The residue at $z=i$ can then be calculated by

$$
\operatorname{Res}_{z=i} \frac{1}{2\left(z^{2}+1\right)^{2}}=\frac{\phi^{(2-1)}(i)}{(2-1)!}=\phi^{\prime}(i),
$$

where $\phi(z)$ is equal to $f(z)$ without $(z-i)^{2}$.

$$
\phi(z)=\frac{1}{2(z+i)^{2}} \quad \rightarrow \quad \phi^{\prime}(z)=-\frac{1}{(z+i)^{3}} \quad \Rightarrow \quad \phi^{\prime}(i)=\frac{1}{8 i}
$$

So then

$$
\operatorname{Res}_{z=i} \frac{1}{2\left(z^{2}+1\right)^{2}}=\frac{1}{8 i}
$$

and

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{d r}{2\left(r^{2}+1\right)^{2}} & =2 \pi i\left(\frac{1}{8 i}\right) \\
& =\frac{\pi}{4} .
\end{aligned}
$$

Therefore, changing the dummy integration variable to x,

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}=\frac{\pi}{4}
$$

The Integral Over C_{R}

Our aim here is to show that the integral over C_{R} tends to zero in the limit as $R \rightarrow \infty$. The parameterization of the semicircular arc in Fig. 93 is $z=R e^{i \theta}$, where θ goes from 0 to π.

$$
\begin{aligned}
\int_{C_{R}} \frac{d z}{2\left(z^{2}+1\right)^{2}} & =\int_{0}^{\pi} \frac{R i e^{i \theta} d \theta}{2\left[\left(R e^{i \theta}\right)^{2}+1\right]^{2}} \\
& =\int_{0}^{\pi} \frac{R i e^{i \theta} d \theta}{2\left(R^{2} e^{i 2 \theta}+1\right)^{2}}
\end{aligned}
$$

Now consider the integral's magnitude.

$$
\begin{aligned}
&\left|\int_{C_{R}} \frac{d z}{2\left(z^{2}+1\right)^{2}}\right|=\left|\int_{0}^{\pi} \frac{R i e^{i \theta} d \theta}{2\left(R^{2} e^{i 2 \theta}+1\right)^{2}}\right| \\
& \leq \int_{0}^{\pi}\left|\frac{R i e^{i \theta}}{2\left(R^{2} e^{i 2 \theta}+1\right)^{2}}\right| d \theta \\
&=\int_{0}^{\pi} \frac{\left|R i e^{i \theta}\right|}{\left|2\left(R^{2} e^{i 2 \theta}+1\right)^{2}\right|} d \theta \\
&=\int_{0}^{\pi} \frac{R}{\left|R^{2} e^{i 2 \theta}+1\right|^{2}} \frac{d \theta}{2} \\
& \leq \int_{0}^{\pi} \frac{R}{\left(\left|R^{2} e^{i 2 \theta}\right|-|1|\right)^{2}} \frac{d \theta}{2} \\
&=\int_{0}^{\pi} \frac{R}{\left(R^{2}-1\right)^{2}} \frac{d \theta}{2} \\
&=\frac{\pi}{2} \frac{R}{\left(R^{2}-1\right)^{2}}
\end{aligned}
$$

Now take the limit of both sides as $R \rightarrow \infty$.

$$
\begin{aligned}
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{d z}{2\left(z^{2}+1\right)^{2}}\right| \leq \lim _{R \rightarrow \infty} & \frac{\pi}{2} \frac{R}{\left(R^{2}-1\right)^{2}} \\
& =\lim _{R \rightarrow \infty} \frac{\pi}{2 R^{3}} \frac{1}{\left(1-\frac{1}{R^{2}}\right)^{2}}
\end{aligned}
$$

The limit on the right side is zero.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{d z}{2\left(z^{2}+1\right)^{2}}\right| \leq 0
$$

The magnitude of a number cannot be negative.

$$
\lim _{R \rightarrow \infty}\left|\int_{C_{R}} \frac{d z}{2\left(z^{2}+1\right)^{2}} d z\right|=0
$$

The only number that has a magnitude of zero is zero. Therefore,

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{d z}{2\left(z^{2}+1\right)^{2}} d z=0
$$

